Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions.

نویسندگان

  • C Wan
  • M Scala
  • G W Morley
  • Atm A Rahman
  • H Ulbricht
  • J Bateman
  • P F Barker
  • S Bose
  • M S Kim
چکیده

We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wave packet of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravity induced dynamical phase (accrued solely on the spin state, and measured through a Ramsey scheme) is used to reveal the above spatially delocalized superposition of the spin-nano-object composite system that arises during our scheme. We find a remarkable immunity to the motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey fringes. The mass independence of our scheme makes it viable for a nano-object selected from an ensemble with a high mass variability. Given these advantages, a quantum superposition with a 100 nm spatial separation for a massive object of 10^{9}  amu is achievable experimentally, providing a route to test postulated modifications of quantum theory such as continuous spontaneous localization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large quantum superpositions and interference of massive nanometer-sized objects.

We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is perfo...

متن کامل

Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations

Recently, there has been much interest in optomechanical devices for the production of macroscopic quantum states. Here we focus on a proposed scheme for achieving macroscopic superpositions via nested interferometry. We consider the effects of finite temperature on the superposition produced. We also investigate in detail the scheme’s feasibility for probing various novel decoherence mechanism...

متن کامل

Probing Quantum Violations of the Equiva - lence Principle

The joint realm of quantum mechanics and the general-relativistic description of gravitation is becoming increasingly accessible to terrestrial experiments and observations. In this essay we study the emerging indications of the violation of equivalence principle (VEP). While the solar neutrino anomaly may find its natural explanation in a VEP, the statistically significant discrepancy observed...

متن کامل

Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case it is shown how an analog of Hanbury-Brown Twiss photon-photon correlation interferometry can be used to discern a variety of interferenc...

متن کامل

Measuring nonequilibrium retarded spin-spin Green’s functions in an ion-trap-based quantum simulator

Recently a variant on Ramsey interferometry for coupled spin-1/2 systems was proposed to directly measure the retarded spin-spin Green’s function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green’s functions within the transverse-field Ising mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 117 14  شماره 

صفحات  -

تاریخ انتشار 2016